Image

爱因斯坦探针:宇宙天体爆发的捕手

2020-08-27

X射线天文学的兴起

1962年6月18日黄昏,位处沙漠之中的美国新墨西哥州白沙导弹测试场,被炙烤一天的热气开始慢慢散去。这里的沙粒以洁白胜雪而著称于世,这个地方也因此得名白沙。几顶帐篷和设备零星散落在一眼望不到头的沙漠之中,偶有人员进出,在不远处也竖立着一个小型火箭。

当最后一缕夕阳洒在沙漠之上,折闪着亮光,很是漂亮,然而远处忙碌的人们无暇欣赏这时的美景。他们是AS&E公司的科学家贾科尼领导的团队,在这忙碌了好几天,在做着最后的检查。

再过几个小时,一个小型的探空科研火箭将再次从这里发射,他们希望能够观测到月球表面被太阳风粒子击打所产生的X射线。

图1:白沙的夕阳(来源:Keith Carver/Flickr)

自从伦琴在20世纪初发现X射线以来,到20世纪60年代,人类对于X射线已经非常熟悉,知道它是我们熟知电磁波谱上的一个组成部分,但是光子的能量更高,在一些极端的条件可能产生。

当时的科学家根据之前的射电和光学观测结果,猜测太阳和月亮应该最可能产生很强的X射线辐射。不过因为大气气体对于X射线的吸收,观测只能在大气之外进行。

图2:地球大气层的电磁波透过率(来源:维基百科)

在贾科尼团队实验之前,已有好几个团队试图探测来自于除太阳之外的天体的X射线辐射,不过均已告负。为此,贾科尼团队对探测设备的灵敏度做了很大改进。

在大约半年多之前,贾科尼团队就已经尝试发射了一次探空火箭。那一次,他们有点不太走运。尽管火箭发射成功,但是探测器前面的遮挡盖没能及时打开,结果是没能进行任何观测。这次,他们必须仔细检查,避免重蹈覆辙。并且他们在这个火箭上装了三个不同的探测器,以此来提高成功观测的可靠性。

就在午夜来临的前一分钟,随着“点火”成功,火箭呼啸着离开白沙基地,向着黑暗的宇宙深空飞去。看着火箭离开地面慢慢变小,此次任务的负责人贾科尼心中充满了期待,他多么希望此次探测器能够顺利打开,更期待能够看到来自月球的荧光反射,如果之前的理论模型正确,那么这次应该能够成功,这将是人类第一次探测到来自宇宙天体源的X射线。

火箭到达了200多公里的高度,在高空飞行了短暂的5分钟后落回了地面。根据第二天找到的火箭残骸来看,观测还算顺利,三个探测器中的两个打开了。

在之后的结果分析中发现,整个探测过程持续了大约300多秒,令他们失望的是在观测的结果中并没有看到来自于月亮方向上的X射线。但出乎意料地却在其它方向上探测到了异常明亮的X射线信号,此信号位于天蝎座当中,因此被命名为Sco X-1。为了确认此信号不是其他虚假信号,贾科尼团队花了整整三个月的时间,终于排除了其他可能性,确认这是一个来自于宇宙的X射线源。X射线天文学正因这一发现而被开启。

在他们公布这一结果之后,众多科学家为之兴奋。因为他们知道,一扇观测宇宙的新窗口被打开。自此之后,科学家们在发射探空科研火箭的同时,也开始尝试着制造专门的空间望远镜,这样可以进行更长时间的观测,X射线天文学得到了极大发展。

图3:钱德拉X射线卫星(来源:维基百科)

  截止目前,从最早的贾科尼领导的“乌呼鲁”卫星到目前最具代表性的钱德拉X射线卫星,X射线望远镜已经经历了好几代的发展,望远镜越做越大,也越来越灵敏,发现的宇宙天体越来越多。

  X射线天文学的研究从起初传统的单个宇宙天体的图像和能谱性质研究(如图4所示的银河系中心的X射线拼接图),逐步向众多天体随时间演化的方向转变,后者就是当下非常热门的“时域天文学”。

图4:银河系中心的X射线拼接图(来源:ESA/XMM-Newton/G. Ponti et al.)

  新时代的研究热点:时域天文学

  时域天文学的主要研究对象是暂现源和剧烈爆发天体,它们也是宇宙中壮观而神秘的自然现象。

  什么是暂现源和剧烈爆发天体呢?暂现源是指在短时间内出现,然后很快消失的天体。剧烈爆发天体则是指亮度在短时间内突然出现数量级式增长的天体。这两种天文现象主要源自两类天体物理过程。一是天体自身的突变过程,比如恒星的塌缩、黑洞或中子星之间的并合,典型天体为超新星、伽马射线暴(图5)等。

图5:伽玛射线爆(来源:NASA/Swift/Cruz deWilde)

  另一类产生于极端物理环境,比如黑洞和中子星周围的超强引力场及磁场,典型天体为X射线双星、活动星系核、黑洞潮汐瓦解事件(图6)等。

图6:黑洞潮汐瓦解事件(来源: ESA/C. Carreau)

  由于这类突发性事件在时间和空间上都很难预测,为了达到及时捕获信号的目标,就需要大视场的望远镜进行高频率的全天监测。

  暂现源和剧烈爆发天体的辐射普遍能在X射线波段被探测到。目前在轨运行的X射线大视场监测设备有美国宇航局的Swift/BAT(“雨燕”卫星的爆发警报望远镜)和日本宇航局搭载在国际空间站上的MAXI全天X射线监视器。这些设备(包括之前RXTE卫星上的ASM全天监视器)都工作在中等和硬X射线波段,而在软X射线波段(光子能量小于2 keV)尚未有很好的全天监测设备。

  主要原因有两方面:一方面目前所有的X射线大视场监视器均利用非聚焦型的光路设计,但由于重量和经费的限制,这类型的全天监测设备几乎已经达到了技术瓶颈;另一方面,目前在X射线天文领域广泛应用的Wolter I型聚焦光学系统可以带来很高的灵敏度和空间分辨率(如欧空局的XMM牛顿卫星,美国宇航局的钱德拉卫星),但这种光学设计的视场非常小,难以胜任全天监视器的工作。因而未来的X射线全天监测需要另辟蹊径。

  时域天文研究的利器:爱因斯坦探针

  在此背景之下,以中国科学院国家天文台研究人员为首的科学家们提出了爱因斯坦探针(Einstein Probe,简称EP)卫星项目。EP是一颗面向时域天文学和高能天体物理的天文探测卫星(图7),将搭载一台软X射线波段的宽视场监视器,以满足在该波段开展大视场全天监测的迫切需求。该设备采用仿生龙虾眼的聚焦光学系统设计,同时具有高灵敏度和大视场。

  此外,EP还具备一台窄视场的X射线望远镜,以开展深度后随观测。探针寓意着卫星到时能够捕捉到黑洞及其爆发、引力波源电磁对应体、超新星等天文现象,从而帮助科学家解决其中的重大科学问题。黑洞和引力波都是爱因斯坦广义相对论的重要预言,以爱因斯坦为名,不仅高度概括其科学目标,更是在向这位人类历史上最伟大的科学家致意。

图7:爱因斯坦探针探测黑洞潮汐瓦解恒星事件的艺术想象图

  早在1979年,天文学家Angel就提出了可以模仿龙虾眼睛的成像原理来设计一种宽视场聚焦X射线望远镜。近十年来,这种可以实现广角成像的X射线聚焦光学技术—龙虾眼微孔光学技术日趋成熟(图8),这使得大视场X射线聚焦成像观测成为可能。

图8:龙虾眼微孔光学系统示意图

  国家天文台自2010年以来开展了龙虾眼微孔X射线成像光学应用技术的研发,目前已掌握其原理及应用技术。在此基础上,国家天文台响应中科院战略性先导专项空间科学背景型号(第二批)的项目征集,联合高能物理所等单位,于2013年初提出EP卫星概念。

  在背景型号项目的支持下,经过两年多的研究,完成了卫星概念、科学目标和关键技术研究以及核心原理样机研制。2017年底,EP卫星成为中科院先导科技专项正式立项的项目,系统的工程研制阶段已经于2017年9月开始,研制周期为5年。

  尽管国际上也有利用该技术研制X射线全天监视器计划的提案,包括美国宇航局于2017年遴选进入概念研究的、基于国际空间站的ISS-TAO以及最新提出的卫星概念TAP和欧洲联合团队的卫星计划Theseus,这些提案都尚未正式立项。所以说中国在这一方向处于领先地位。

  EP卫星由一台宽视场X射线望远镜(Wide-field X-ray Telescope, WXT)和一台后随观测X射线望远镜(Following-up X-ray Telescope, FXT)组成。WXT采用了微孔龙虾眼光学技术,具有3600平方度的视场,探测能段为0.5–4keV。相比目前的其它巡天望远镜Swift/BAT和MAXI,EP卫星的WXT的探测灵敏度提高了一个数量级以上。

  EP卫星因其具有软X射线高灵敏度和实时动态巡天监测的能力,填补了国际上在该波段的大视场全天监测设备的空白,能帮助科学家系统性地发现和探索宇宙高能暂现天体,特别是更暗弱、遥远或稀有的剧变天体。因而预期我们能够发现宇宙中的X射线剧变天体,并监视它们的活动情况,发现和探索宇宙中沉寂黑洞的耀发,甚至探寻来自引力波源的X射线信号,以增进对极端致密天体及其并合过程的认知。

  X射线对于宇宙的探索兴起于60年代,就在同一时期,日本新干线铁路系统开通,这是世界上首个高速铁路,速度达到了将近300公里。对比之下,中国高速铁路发展相对缓慢,直到90年代后期,中国意识到发展高速铁路的重要性,开始大力发展高铁。到2008年,中国高铁正式亮相开始运营,之后突飞猛进,在这短短的10年之内,就已经完成了从追赶到超越,开启了人类交通史上的新纪元。

  如今,中国X射线天文学的发展,也正经历着类似的历程。2017年6月,在落后了国外差不多半个多世纪之后,中国自己的第一颗X射线卫星HXMT终于从酒泉发射,我们终于迈入了拥有自己望远镜的时代。

  从现在起的几年之后,我们将迎来EP卫星和其他一些X射线卫星的发射。这些望远镜中,不乏发射之后成为这个领域当中的旗舰。这些望远镜同时也会采用更为先进的技术,它们的研制和运行将进一步提升我国在高能天体物理领域中的研究水平。相信在不远的未来,我们也会成为X射线天文研究的强国。期盼之。

责任编辑:郭旭晖 龚丽华
阅读
转发
点赞
评论
加载中...

相关新闻

取消 发布
欢迎发表你的观点
0