新型光场显微镜高速记录大脑神经元活动和血流的快速动态变化
8月10日23点,Nature Biotechnology在线发表了由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室研究员王凯研究组完成的题为《共聚焦光场显微镜对小鼠和斑马鱼大脑快速体成像》的研究论文。该研究发展了一种新型体成像技术:共聚焦光场显微镜(Confocal light field microscopy),可以对活体动物深部脑组织中神经和血管网络进行快速大范围体成像。
跨脑区大规模的神经元如何整合信息并影响行为是神经科学中的核心问题,解答这一问题需要在更高时空分辨率上捕捉大量神经元活动动态变化的工具。共聚焦显微镜和双光子显微镜等运用于活体脑成像的传统工具基于点扫描,时间分辨率较低,难以研究大范围脑区中神经元的快速变化。因此,近年来科研人员一直致力于开发更快的成像方法。在多种新技术中,光场显微镜具有潜力,得到广泛关注,其特点在于可以在相机的单次曝光瞬间,记录来自物体不同深度的信号,通过反卷积算法重构出整个三维体,实现快速体成像,在线虫、斑马鱼幼鱼等小型模式动物上已获得初步应用。
传统光场显微镜存在两个难以解决的问题,限制了其在生物成像上的应用。首先,重构的结果会出现失真。2017年,王凯研究组研发的新型扩增视场光场显微镜(eXtended field-of-view Light Field Microscopy, XLFM)解决了这一问题,并应用于自由行为斑马鱼幼鱼的全脑神经元功能成像上,首次三维记录了斑马鱼幼鱼在完整捕食行为中的全脑神经元活动的变化。其次,现有光场显微成像技术缺乏光学切片能力,无法对较厚组织,如小鼠的大脑进行成像。让光场显微镜具有共聚焦显微镜一样的光学切片能力,滤除大样品中焦层之外的背景信号来提高信噪比,是提高成像质量、可广泛应用的关键所在。
然而,传统共聚焦显微镜采用激光逐点扫描和共轭点针孔检测来降低焦面外噪声的策略不适用于三维光场显微镜。面对这一挑战,研究团队创新提出广义共聚焦检测的概念,使其可以与光场显微镜的三维成像策略结合,在不牺牲体成像速度的前提下有效滤除背景噪声,提高了灵敏度和分辨率。这种新型的光场显微成像技术称为共聚焦光场显微镜。
研究团队在不同动物样品上测试了共聚焦光场显微镜的成像能力。团队成员对包埋的活体斑马鱼幼鱼进行全脑钙成像,对比共聚焦和传统光场显微镜的成像结果,发现加入光学切片能力后,图像分辨率和信号噪声比提高,可以检测到更多较弱的钙活动。进一步的,将共聚焦光场显微镜和高速三维追踪系统结合,对自由行为的斑马鱼幼鱼进行全脑钙成像,在ø 800 μm x 200 μm的体积内达到2 x 2 x 2.5 μm3的空间分辨率和6Hz的时间分辨率。受益于更高的分辨率和灵敏度,可以识别出斑马鱼幼鱼在捕食草履虫过程中单个神经元的钙离子活动的变化。
团队成员验证了共聚焦光场显微镜对小鼠大脑的成像效果,对清醒小鼠的视皮层进行钙成像,可以同时记录ø 800 μm x 150 μm的体积内近千个神经元的活动,最深可达约400 μm,且连续5小时以上稳定记录超过10万帧,没有明显的光漂白。团队成员进一步尝试使用共聚焦光场显微镜对鼠脑中的血细胞进行成像,深度可达600 μm,拍摄速度70 Hz,同时记录上千根血管分支中群体血细胞的流动情况并计算血细胞的速度,相比之前的传统成像方法通量提高了百余倍。
研究团队在自由行为的斑马鱼幼鱼和小鼠大脑上证明了共聚焦光场显微镜有更高的分辨率和灵敏度,为研究大范围神经网络和血管网络的功能提供了新的工具。同时,该技术不仅适用脑组织的成像,还可以根据所需成像的样品种类灵活调整分辨率、成像范围和速度,应用在其他厚组织的快速动态成像中。
研究在王凯的指导下,主要由博士研究生张朕坤、白璐,以及助理研究员丛林共同完成。王凯研究组余鹏、张田蕾,中国科学技术大学本科生石万卓,杜久林研究组李福宁做出贡献,研究员杜久林参与合作并给予指导意见。研究得到中科院脑智卓越中心实验动物平台的支持。研究工作受到科技部、中科院、国家自然科学基金委员会和上海市的资助。
来源:中国科学院脑科学与智能技术卓越创新中心